MANY PERSPECTIVES
ONE VISION

INSIDE
:: Geosciences in the Cinema :: Field Notes Colombia
If you can read the text at right, you can read binary code.

What you’re seeing is the feature on the 50th anniversary of the computer science department that appears on page 22 translated into binary code. A binary code is a way of representing text or computer processor instructions by the use of the binary number system’s two-binary digits 0 and 1. This is accomplished by assigning a bit string to each particular symbol or instruction.
GREETINGS,

When undergraduate Ravindran Rajesvaran was considering colleges from his hometown of Kuala Lumpur, he settled on Purdue’s College of Science because of the reputation of our actuarial science program and the University’s large Malaysian community.

It is that combination of academic prowess and diverse community that for decades has drawn students and faculty from around Indiana, across the country and around the world to Purdue, and helps us in our quest to use globally informed teams to solve world challenges.

In this issue of Insights, we take a look at diversity in the College of Science through the lens of photographer Steven Yang. We let the faces and voices of our students — undergraduates and graduate students from down the road and across the hemisphere, and from America’s pueblos to rural Colombia — tell the story of our wonderfully mixed community. Many of them are a long way from home, but all say they have found a family here at Purdue and have benefitted from a learning environment in which being a part of diverse classroom and laboratory teams has expanded their horizons and become an expected norm.

You’ll also meet faculty members Chris Andronicos, professor of earth, atmospheric, and planetary sciences, and a national leader of the Society for Advancement of Chicanos and Native Americans in Science (SACNAS), and Esrey Gonas, a math professor. Both are committed to drawing greater numbers of underrepresented students into the sciences.

And you’ll hear from a mother-and-son team who came to Purdue from India decades apart, each to pursue scientific excellence — Manju Sharma, president and executive director of the Indian Institute of Advanced Research, and daughter Priyanka, a math professor. Both are committed to drawing greater numbers of underrepresented students into the sciences.

This issue of Insights also celebrates the 50th anniversary of our Department of Computer Science, the first such department in the country when it was established in 1962.

In June, Indiana Governor Mitch Daniels was named as the University’s next president. He will begin his term in January. Currently serving as interim president is Timothy Sands, Purdue’s provost. The College of Science looks forward to the innovations and ideas the new administration will bring to the University.

JEFFREY T. ROBERTS
Frederick L. Hovde Dean of the College of Science

FEATURES

04 FUN WITH FILM
Geosciences in Cinema separates fact from fiction

22 HAPPY ANNIVERSARY
Computer Science celebrates 50 years

24 ALUMNI PROFILE
Math grad Lisa Hodson-Walker moves from the world of finance to community-supported agriculture

26 Q & A
It's all in the family: biology graduate Amit Sharma and his mother, Manju Sharma, a one-time Purdue postdoc

DEPARTMENTS

19 BREAKTHROUGHS

30 CLASS NOTES

33 LAST WORD

Purdue’s science students like Native American Kyle Bemis (on the cover) and Mariana Smit Vega Garcia of Brazil (above) come from down the road and across the hemisphere. Each brings personal experience and perspective to a learning environment in which being a part of diverse classroom and laboratory teams helps move Purdue forward in its quest to find globally informed solutions to world challenges.

PHOTOGRAPHY BY STEVEN YANG

CORRECTION
LEAD is the acronym for Learning through Experience and Awareness in Diversity (LEAD), a program overseen by Purdue’s Diversity Resource Office. The name of the program was incorrect in the spring issue of Insights.

Purdue UNIVERSITY

Science students packed an auditorium for that day’s lesson in a favorite course, Geosciences in the Cinema. The projector hanging from the ceiling started shaking and the image on the wall began to quiver. No IMAX theater. The class, in which students watch and then discuss movies such as *Twister* and *The Day After Tomorrow*, was experiencing a real-life earthquake centered in Virginia.

"I could not have planned it better," says Andy Freed, associate professor of earth, atmospheric, and planetary sciences, who created the class in 2005 with colleague Noah Diffenbaugh, who now teaches at Stanford University.

Geosciences in the Cinema is popular with science majors and nonmajors alike. Since its first semester, the class of 150 students has often had a waiting list. The course was cited as one of Purdue’s top-three “coolest” classes at Purdue in a recent issue of the student newspaper, The Exponent.

Freed, who now teams with colleague Matt Huber, uses movie and YouTube clips and full-length features to help educate students on global warming, volcanoes, severe weather and, yes, earthquakes.

"I taught an earthquakes and volcanoes class when I first came to Purdue and it was for nonmajors," Freed recalls. "I struggled a bit connecting with the students. A lot of the nonmajors fear the natural sciences, and I didn’t want the class to be dry. So, I started showing some clips from movies to demonstrate some of the processes. I show them some tsunamis and some volcanic eruptions. Students seem to pay more attention and ask more questions after they view some clips. A lot of the questions are ‘Is that real? Does that really happen?’"

This fall, the class meets Tuesdays and Thursdays with an optional movie on Wednesday evenings. The quality of the films varies, on purpose. Some are blockbuster features like *2012* and *The Day After Tomorrow* where the computer-generated imagery (CGI) stuns and the writing has viewers on the edges of their seats. Others include lesser-known, straight-to-DVD releases. One of the lesser-known is *Aftershock*, a gripping drama from China centering on life after a massive earthquake. *Aftershock* is one of the highlights this fall is the 2003 disaster film, *The Core*, starring Aaron Eckhart and Hilary Swank, to help illustrate what goes on inside our planet.

The top criterion for the movies is that the science must be highly evident but it doesn’t always have to be 100 percent correct. Movies that fudge the science can offer up some of the best class discussions, Freed says.

"Even the ones that are bizarre or completely incorrect get them thinking. Those are especially powerful because they are so unbelievable that students have to ask if they are true," Freed says. "Of course, there are some very real processes that are pretty unbelievable, too."

Freed’s research expertise is in earthquakes and planetary science. One of his favorite titles to show in class is a 2006 made-for-TV movie called *Supervolcano*.

"The tagline is ‘It’s a true story. It just hasn’t happened yet,’” Freed says. "The movie looks at Yellowstone Park and the fact that it is a super volcano. It’s had three super eruptions in the last 2 million years. Its last was 600,000 years ago, and we’re coming due. This movie is about what happens if a super eruption happens today. The science is just spot on."

Sean Harmison, a senior studying industrial distribution in the College of Technology, is one of the many non-science majors in the class. Friends recommended the class to him, and he is finding the use of films and clips to learn geoscience concepts to be working already.

"It’s a nice way to change things up instead of PowerPointing you to death," Harmison says.

Fall 2012 Movies

- *The Core*
- *2012*
- *Tsunami: The Wave That Shook the World*
- *Evolution*
- *Jurassic Park*
- *Ice Age*
- *Dante’s Peak*
- *Supervolcano*
- *Deep Impact*
- *The Day After Tomorrow*
- *Twister*
- *The Perfect Storm*
MANY PERSPECTIVES
ONE VISION

Boilermakers know that better-informed solutions are the result of multiple perspectives, unique experiences and fully optimized knowledge centers. We draw from the wealth of our diverse scientific community to build a university that is prepared to contribute innovative solutions for today’s global challenges. Meet Purdue’s global scientists.

By Linda Thomas Terhune
Photography by Steven Yang

Ravindran Rajesvaran

Working with people from different backgrounds can be interesting, because you get exposed to different ways of thinking and skills that are required to approach a problem.

Kuala Lumpur, Malaysia | Actuarial Science and Mathematical Statistics | Senior

Research Focus: Estimation of the Agency for Healthcare Research and Quality (AHRQ)’s Prevention Quality Indicator for Uncontrolled Diabetes (PQI14) for various population demographics in Indiana and the United States. Conducted statistical significance tests to determine the differences in the PQI14 estimates between various populations and developed a logistic regression model that identified significant predictors for the indicator. Hopes to pursue graduate study in quantitative finance, statistics or economics.

Fall 2012 | 76 | Insights
WHEN MY MOM SEES PHOTOS OF MY FRIENDS, SHE JOKES THAT IT’S LIKE A U.N. MEETING. INTERACTING WITH SO MANY PEOPLE FROM DIFFERENT PLACES AND DIFFERENT BACKGROUNDS, HABITS AND PERSPECTIVES ON LIFE HAS BEEN INCREDIBLY ENRICHING FOR ME. THIS EXPERIENCE BROADENS OUR HORIZONS AND TEACHES US HOW TO APPROACH THINGS FROM A DIFFERENT SIDE, WHICH IS SO IMPORTANT IN ACADEMIA AND IN LIFE IN GENERAL.”

DIVERSITY HAS MANY FORMS, NOT ONLY DIFFERENCES OF GENDER, ETHNICITY AND CULTURE, BUT ALSO GAPS IN EXPERTISE AND PERSPECTIVES. DURING THE PROBLEM-SOLVING PROCESS, PEOPLE WHO HAVE DIFFERENT BACKGROUNDS, SKILLS AND KNOWLEDGE WILL CONTRIBUTE MORE IDEAS THAN GROUPS WITH A SINGLE ORIENTATION.”

SÃO PAULO, BRAZIL | Mathematics | Doctoral candidate

RESEARCH FOCUS: Partial differential equations. Plans to become a professor.

TIANJIN, CHINA | Physics | Doctoral candidate

RESEARCH FOCUS: Condensed matter physics. Currently exploring electronic transport properties in low-dimensional electron systems.
KYLE BEMIS

WITH AN ABUNDANCE OF CULTURES AND BACKGROUNDS, WE WILL ALWAYS HAVE NEW WAYS TO LOOK AT THE WORLD AND DISCOVER SOMETHING AMAZING. IF WE CAN’T COMMUNICATE ACROSS THE CULTURES OF DIFFERENT RACIAL AND ETHNIC BACKGROUNDS, HOW CAN WE POSSIBLY HOPE TO COMMUNICATE BETWEEN DISCIPLINES? NOW MORE THAN EVER, WITH THE SCIENCES BECOMING INCREASINGLY INTERDISCIPLINARY, DIVERSITY IS NOT JUST IMPORTANT, BUT A NECESSITY.

INDIANAPOLIS, INDIANA (member of Zuni Tribe) | Statistics | Doctoral candidate

RESEARCH FOCUS: Developing statistical and computational methods for the analysis of DESI imaging mass spectrometry data.

ROBERT NESS

SCIENCE PROGRAMS OFTEN HAVE STUDENTS WITH A NARROW RANGE OF PAST EXPERIENCES AND FUTURE PLANS. MORE STUDENT DIVERSITY MEANS MORE ALUMNI DOING DIFFERENT THINGS WITH THEIR DEGREES AND HENCE MORE CAREER OPPORTUNITIES FOR ALL STUDENTS.

HARRISBURG, PENNSYLVANIA | Statistics | Doctoral candidate

RESEARCH FOCUS: Big data, with focus on network biology.
Diverse communities are able to come up with innovative ideas and apply them to specific objectives. This really enriches research.

Allowing underrepresented populations to express their viewpoints allows new ideas to gain extra dimensions and develop a wider foundation that can support international growth. It also helps to lessen the exclusionary attitude that Western science has maintained for many years.

ROBY DOUILLY

PORT-AU-PRINCE, HAITI | Geophysics | Doctoral candidate

Research focus: Earthquake seismology and kinematic/dynamic fault modeling. The study will help scientists understand the physics behind the rupture propagation from one active fault to another in the 2010 Haiti earthquake.

DARRYL REANO

ACOMA PUEBLO, NEW MEXICO | Earth, Atmospheric, and Planetary Sciences | Master’s candidate

Research focus: Geology — Detrital zircon geochronology, focusing on the provenance of sediments in the distal Cordilleran foreland basin. Also, he hopes to run a diversity center on a university campus.
BRITTANY VACCHIANO

COMING FROM AN ALL-FEMALE HIGH SCHOOL, WITH NO COMPUTER COURSES, I KNOW FIRSTHAND THE DIFFICULTIES FEMALES FACE WHEN ATTEMPTING TO ATTAIN A TECHNOLOGY-RELATED DEGREE. I WANT TO TEACH YOUNG WOMEN THAT A COLLEGE DEGREE IN TECHNOLOGY IS NOT IMPOSSIBLE. KEEPING FEMALES IN THE FIELD HELPS ENRICH IT BY BREAKING THE BARRIER THAT SOCIETY HAS PLACED ON IT IN STATING THAT THE FIELD IS ONLY FOR NERDY MEN.

CHICAGO, ILLINOIS | Computer Science | Sophomore

GOALS: Travel the world, spend a few years in industry, then settle into a career at an all-female high school teaching young women about computer science, programming and information technology.

NADYA ORTIZ

DIVERSITY ENRICHES THE COMMUNITY BY BRINGING DIFFERENT PERSPECTIVES TO A RESEARCH PROJECT. THE VOICE NOT ONLY REPRESENTS A SINGLE INDIVIDUAL BUT IS THE VOICE OF MANY OTHERS.

IBAGUE, COLOMBIA | Computer Science | Master’s candidate

RESEARCH FOCUS: Data mining.
TIM JOHNSON

“People from different backgrounds bring different perspectives, which allows for different ways to approach a problem and, sometimes, even better answers and better solutions to the problem.”

INDIANAPOLIS, INDIANA | Chemistry | Senior

RESEARCH EXPERIENCE: Cell cycles and the ways in which cancer proliferates, and quantum chemistry and quantum computing — exploring new ways of factoring prime numbers.

SOON CHEONG KWAN

“Underrepresented populations often have unique experiences to share with others. Multiple perspectives, social backgrounds and cultural differences do give more colors to our society.”

KUALA LUMPUR, MALAYSIA | Chemistry | Senior

RESEARCH FOCUS: Inorganic/organic chemistry and alternative energy. Hoping to help solve the energy crisis.
EDRAY GOINS, a math professor, grew up in South Central Los Angeles with one dream—to attend Caltech. In 1991, he did just that when he enrolled as a freshman to study math and physics. He was one of 25 African-American students on a campus of 2,500 students that had no black faculty. Goins set about creating a community for the African-American students by establishing the Caltech chapter of the National Society of Black Engineers—a coincidental founding at Purdue.

Goins founded at Purdue.

"On a day where fireworks lit up skies across America, the world of science unveiled explosive news concerning the long-time elusive Higgs boson particle," says Shipsey, who also distinguished professor of Physics, attended the announcement on July 4 at the European Organization for Nuclear Research, or CERN, laboratory in Geneva, Switzerland.

"We are talking little green microbes, not little green men," says Jay Melosh, a distinguished professor of earth, atmospheric and planetary sciences and physics and aerospace engineering at Purdue. "A sample from Phobos could contain Martian material blasted off from large asteroid impacts. If life on Mars exists or existed within the last 10 million years, a mission to Phobos could yield our first evidence of life beyond Earth."

Melosh led a team chosen by NASA’s Planetary Protection Office to evaluate if a sample from Phobos could contain enough recent material from Mars to include viable Martian organisms. The study was commissioned to prepare for the failed 2011 Russian Phobos-Grunt mission, but there is continued international interest in a Phobos mission, he says. It will likely be a recurring topic as NASA reimagines its Mars Exploration Program.

"This material is ceramic, like your dinner plates, and it has no business conducting electricity, but under the right conditions it conducts electricity perfectly with zero energy loss," Carlson says. "A better understanding of how and why this superconductor works could help us design better ones. If we can create a superconductor that works at high enough temperatures, it could transform how we use and generate energy."

REFLECTION: FACULTY AND DIVERSITY

EDRAY GOINS, a math professor, grew up in South Central Los Angeles with one dream—to attend Caltech. In 1991, he did just that when he enrolled as a freshman to study math and physics. He was one of 25 African-American students on a campus of 2,500 students that had no black faculty. Goins set about creating a community for the African-American students by establishing the Caltech chapter of the National Society of Black Engineers—a coincidental founding at Purdue.

At the time, there were so few of us, and there was a history of many black students not making it through the program, that we had to look for each other," Goins recalls. "We had study groups, meetings, scholarship information sessions, and more. I had no mentoring as an undergraduate and spent a lot of time wondering why not. I made it a point when I returned to Caltech as a postdoc to take on several students so they didn’t fall through the cracks." In addition to mentoring students and taking them to conferences, he recently organized a lecture series featuring women of color in mathematics.

"I hope students, undergraduate and graduate, see as many people as possible," he says. "Let’s be exposed to as diverse a background as possible."

CHRISS ANDRONICOS, associate professor of earth, atmosphere, and planetary sciences, grew up in Albuquerque, New Mexico; his father was the governor of San Juan Pueblo and his mother was an Indian artist. He spent his undergraduate years at the University of Texas at El Paso and, later, Cornell. Andronicos joined the Purdue faculty in January 2012, and, although far from his homeland, he has never forgotten his Native American roots or the multicultural childhood community that colored his worldview.

"It is very important to have a lot of different perspectives in decision making, because if you look at students people make, they often involve not being aware of something, be it scientific process, philosophy, cultural issues or tabs," Andronicos says.

As interim president of the national Society for the Advancement of Chicannos and Native Americans in Science (SiGUNAS), he is committed to bringing students of diverse backgrounds into science.

"Let’s be exposed to as diverse a background as possible."
HOLE IN ONE

Purdue Scores Top Mind in Atomic, Molecular and Optical Physics
By Tim Brouk

As Chris Greene’s knowledge in atomic theoretical physics increased, so did his passion for golf.

A natural at the sport since his teenage years, Greene pursued golf throughout his schooling as a physics and math major at the University of Nebraska and into his teaching years — graduate studies at the University of Chicago, postdoctoral work at Stanford University, his first faculty position at Louisiana State University for eight years and a 22-year stint at the University of Colorado.

“I was trying to make this hard decision between physics and golf. Until about 12 years ago, I had to have a golf club in my hand every day in the summer,” says Greene, a native Nebraskan. “I decided to go for physics and that was the best decision I’ve made in my life.”

Today, Greene has left his former handicap behind and brought his expertise in atomic, molecular and optical physics (AMO) and the physics of ultra cold atoms to Purdue. He was hired over the summer as a professor of physics and optical physics, a field that studies matter-matter and light-matter interactions. He fills a niche in Purdue’s already impressive physics program.

Greene’s expertise is in both ultra cold and AMO physics. He hopes these fields will attract others to come to Purdue.

“I used to delude myself into thinking that knowing all of this physics could make me a better golfer,” Greene says. “Eventually I’ve come to the conclusion that I play my golf aspirations, he does like to get out on the links occasionally. Does Greene see a correlation between golf and physics? Does his knowledge of physics help him with his stroke or lining up putts?

“Having a school with a philosophy, unified approach and style to imbue a new generation of theorists with the style of doing physics, to me is really exciting and I’m very enthusiastic about that,” Greene says.

Though Greene has driven away from serious golf aspirations, he does like to get out on the links occasionally. Does Greene see a correlation between golf and physics? Does his knowledge of physics help him with his stroke or lining up putts?

“I’m pretty sure in the next year or so I will be teaching a course that will develop this topic. I think the experimental students are hungry for more theoretical teaching in this area. I’m hoping I can provide that.”

Greene explains that his field of ultra cold is the exact opposite of high-energy physics, which houses the Higgs boson realm.

Greene did not enter the theoretical side of physics until his graduate studies at Chicago. He became a protegée of Ugo Fano, a renowned theoretical physicist and former student of quantum mechanics propagator Enrico Fermi. Greene took well to the theory side of physics, taking a look at properties of few-electron atoms and electron correlation. Ultra cold physics was still about a decade away when laser cooling started being able to freeze atoms down to about a millionth of a degree above absolute zero.

Upon moving to Colorado, Greene discovered ultra cold physics at the JILA scientific institute on the Boulder campus. JILA was home to two of the ultra cold collision physics field’s first three Nobel Prize winners in Eric Cornell and Carl Wieman.

Today, Greene’s expertise is in both ultra cold with AMO physics. He hopes these fields will interest Purdue students.

“Those sorts of temperatures get into very deep quantum mechanical phenomena, which are very counterintuitive and fascinating to me,” Greene says. “Studies of few-body quantum phenomena will be a big thrust in the coming years as well.

“I’m pretty sure in the next year or so I will be teaching a course that will develop this topic. I think the experimental students are hungry for more theoretical teaching in this area. I’m hoping I can provide that.”

Greene explains that his field of ultra cold is the exact opposite of high-energy physics, which houses the Higgs boson realm.

“I was trying to make this hard decision between physics and golf. Until about 12 years ago, I had to have a golf club in my hand every day in the summer,” says Greene, a native Nebraskan. “I decided to go for physics and that was the best decision I’ve made in my life.”

Today, Greene has left his former handicap behind and brought his expertise in atomic, molecular and optical physics (AMO) and the physics of ultra cold atoms to Purdue. He was hired over the summer as a professor of physics and optical physics, a field that studies matter-matter and light-matter interactions. He fills a niche in Purdue’s already impressive physics program.

“I think the department decided it was interested in a new thrust in this area and asked if I could spearhead this new thrust,” Greene says. “It sounded like it could be a real opportunity not only for myself but the field. It’s a field I love and a field that should be growing in the U.S. At Colorado, I had a similar role in trying to build up the program.”

Greene was a professor in Boulder, Colorado, when he visited Purdue in April 2011 as part of the Department of Physics Colloquium series. His presentation, “The Sagittar Little Molecules in Nature,” on unusual classes of ultra-long-range molecules – the Rydberg molecule and another talk on ground state atoms with resonant interactions during the Elitzur effect drew many, including physics department head Nick Ciardone.

“He impressed the entire department with the breadth and depth of his work,” Ciardone says. “We have a few people doing related things but his recruitment gives us a chance to build a group with him as the nucleus. He’s someone internationally known and famous and could attract others to come to Purdue.”

Though the first part of his colloquium on the prediction of those weird long-range molecules was a “sideline” project, Greene expects to work more with ground state atoms in his classes and research at Purdue. Those atoms are viewed in “ultra cold temperatures, a billionth of a degree above absolute zero.”

“Those sorts of temperatures get into very deep quantum mechanical phenomena, which are very counterintuitive and fascinating to me,” Greene says. “Studies of few-body quantum phenomena will be a big thrust in the coming years as well.

“I’m pretty sure in the next year or so I will be teaching a course that will develop this topic. I think the experimental students are hungry for more theoretical teaching in this area. I’m hoping I can provide that.”

Greene explains that his field of ultra cold is the exact opposite of high-energy physics, which houses the Higgs boson realm.
Purdue’s Department of Computer Science Celebrates 50 Years

Oct. 1962

Department of Computer Science is created — the first in the nation. Samuel Conte is founding head. It is a division of mathematical sciences along with the departments of Mathematics and Statistics, and is located in the Engineering Administration Building.

5 faculty members (not all full-time), 20 courses, 24 master’s and doctoral students.

1963

First master’s degree in computer science is awarded.

1966

First PhD in computer science is awarded.

1967

The department moves to the Mathematical Sciences Building. The Computer Sciences Center occupied the two floors below ground. The department occupied the fourth floor.

1967-74

80-100 freshmen enroll annually.

1975-77

150 freshmen enroll annually.

1978

The department installs a VAX 11/780 computer system running UNIX, the first at a university. ASCII terminals go into faculty offices and email is sent via uucp to dept. Signal lights installed to indicate system status.

200 freshmen enroll.

1979

First bachelor’s degree in computer science is awarded.

1981

Over 500 new freshmen enter the program, resulting in greatly increased class sizes and corresponding shortage of faculty, space and computing facilities.

1985

The department moves its headquarters to the newly renovated Memorial Gymnasium (now known as Felix Haas Hall), while also retaining space in the Math, Physics and Recitation buildings.

The department introduces the first supervised computing and teaching laboratories at Purdue.

The Software Engineering Research Center (SERC), part of the National Science Foundation’s Industry-University Cooperative Research Program, is established at Purdue with connections to other universities.

1982

The Xinu operating system is developed and used for instruction and research.

1983

John Rice becomes the third head of the department.

1985

The department moves its headquarters to the newly renovated Memorial Gymnasium (now known as Felix Haas Hall), while also retaining space in the Math, Physics and Recitation buildings.

The department introduces the first supervised computing and teaching laboratories at Purdue.

The Software Engineering Research Center (SERC), part of the National Science Foundation’s Industry-University Cooperative Research Program, is established at Purdue with connections to other universities.

1992

Purdue establishes a chapter of Upsilon Pi Epsilon (UPE), the International Honor Society for the Computing Sciences.

1997

Ahmed Samoh becomes the fourth head of the department.

1998

The Center for Education and Research in Information Assurance and Security (CERIAS) is formed at Purdue from the COAST lab and is one of world’s leading centers for research and education in areas of information security.

2002

Susanne Hambrusch becomes the fifth head of the department.

2006

The department moves into the Lawson Computer Science Building, which is named for Richard (MS ’68, HDR ’06) and Patricia Lawson.

2007

Aditya Mathur becomes the sixth head of the department.

2010

Sunil Prabhakar serves as interim head of the department. He is named permanent head in 2012.

The Center for the Science of Information is established at Purdue as an NSF Science and Technology Center.

2012

787 undergraduates

245 graduate students

50 faculty members
City girl leaves Steel Town to attend college in farmland. Returns to city life for a job in the automobile industry. Leaves city once again to buy and run a farm. This is the story of Lisa Hodson-Walker, a 1986 Purdue math graduate who now operates 100-acre Silverwood Farm in the far western suburbs of the city, in a bucolic town named Sherborn. She fell in love with the place and the couple soon moved out of the city and to a historic New England farm. They also began having children.

When the second child was born — they now have four, ages 6 to 13 — Lisa left full-time corporate life to help her husband start Silverwood Partners, an investment banking firm. Something, though, was missing.

“I was ready to do something different,” Lisa recalls. For years, they hayed their farmland and sold the hay to a local horse farm. That wasn’t quite enough. The coupe also had a large family garden, which was getting closer to being different enough. “It was a dream to bring the historic farmland back into production. So, we decided to do what we know and love and try an organic vegetable farm,” she says.

“I had never driven a stick shift, let alone test driving not only Ford cars, but all of the competitors’ vehicles as well. “When I saw Purdue for the first time, it was love at first sight,” she recalls. Last spring, while accepting a Distinguished Alumni Award from the College of Science, she looked back on the 25 years since she left campus. “Unchanged is the solid foundation that the mathematics degree from Purdue has provided me and the great sense of pride that I experience when I tell someone I majored in mathematics at Purdue University.”

SILVER LINING
A Life of Finance and Farming

By Linda Thomas Terhune

The farm uses the money to cover expenses. The members, in exchange, get produce on a weekly basis throughout the growing season. The Silverwood bounty includes standards like lettuce and onions but ranges also to arugula, eggplant, tomatillos, herbs, watermelon and heirloom tomatoes. Members get some 70 pounds of tomatoes over the course of a season.

The Hodson-Walkers are constantly tweaking their operation, and have recently partnered with other organic farmers in the area including a poultry farm and an apiary. They also started a farm-to-hospital initiative for employees at two local hospitals and low-income pediatric patients. In addition, they donate more than 1,000 pounds of fresh produce to local food pantries and shelters.

Looking back at a life that has taken her from city to farmland to corporate life, and now a return to farmland — albeit it not too far from a city — Hodson-Walker sees math behind her moves.

Just as in any business, running a farm is a numbers game — budgets, investment decisions, analyzing market initiatives — not to mention the logistics of crop plans. As a co-founder of a certified organic farm, I draw upon the solid problem-solving background that I gained at Purdue to address issues associated with a business venture such as analyzing growth opportunities, refining requirements, marketing needs and business performance,” she says. “In business, as in many aspects of life, math is fundamental to all that we do.”
Why did you choose to study biological sciences?

I was keen at some point to go into medicine but then changed my mind and decided to go into research (via biology major). Since childhood, I was fascinated with the molecular basis of life and had decided early to contribute knowledge with the molecular basis of life and had many different biological problems. However, when I decided to establish my laboratory I was clear that I wanted to contribute to basic research towards alleviating human suffering from diseases like malaria and asthma. Once my laboratory was running, I realized that dealing with malaria alone was challenging enough. For the past 15 years, my laboratory has been working on malaria parasite proteins in terms of understanding their potential for developing new drugs. And still we have a long way to go.

How did you arrive at your focus on malaria parasites?

My research ideas are inherently driven by my awe and fascination for Darwinian facts of biological evolution. Interestingly, Darwin himself was influenced and guided by the famous geologist Charles Lyell and ideas of uniformitarianism at the time. I was deeply impressed by the hard scientific beauty of the terrific link between evolution of Earth (and its climate) on one hand and evolution of life on the other hand. These ideas dovetail with my view of humans on earth (an evolved species on temporary residence permit, and in all likelihood to be outlived by insects, bacteria, etc.). This academic conditioning also propels me to use buzzwords of science (investigation, observation, evidence, data, hypotheses, awareness, rationality) to alert us to potential environmental catastrophe.

What drives you to evolution and global warming?

My training in structural biology could have been used to study many different biological problems. However, when I decided to establish my laboratory I was clear that I wanted to contribute to basic research towards alleviating human suffering from diseases like malaria and asthma. Once my laboratory was running, I realized that dealing with malaria alone was challenging enough. For the past 15 years, my laboratory has been working on malaria parasite proteins in terms of understanding their potential for developing new drugs. And still we have a long way to go.

What impact do you hope your research will have?

I hope my research operation will be fruitful from many parameters. Firstly, I hope that my laboratory will remain a good training ground for future generations of scientists. This is a very important part of my operation, as I wish that most if not all students from my laboratory eventually start their own research cells. Secondly, I hope that our studies will contribute to the pool of knowledge about life and its biological engines. This knowledge base belongs to all of humanity, and in my own little way I hope to keep adding to it. Finally, I hope that my efforts will allow greater understanding of diseases like malaria.

What draws you to evolution and global warming?

My research ideas are inherently driven by my awe and fascination for Darwinian facts of biological evolution. Interestingly, Darwin himself was influenced and guided by the famous geologist Charles Lyell and ideas of uniformitarianism at the time. I was deeply impressed by the hard scientific beauty of the terrific link between evolution of Earth (and its climate) on one hand and evolution of life on the other hand. These ideas dovetail with my view of humans on earth (an evolved species on temporary residence permit, and in all likelihood to be outlived by insects, bacteria, etc.). This academic conditioning also propels me to use buzzwords of science (investigation, observation, evidence, data, hypotheses, awareness, rationality) to alert us to potential environmental catastrophe.

What do you do after hours?

I retain a deep passion for photography, reading, and cricket. Like many other scientists, I have a special fondness for arts, cinema, music, and may be considered epicurean at times.

When you were an undergradulate, was it unusual for women in India to pursue higher education, especially in science?

There were many challenges that I faced as a female student. These included security and having to work harder to achieve the same goals as male students. Today, the atmosphere has changed and things have improved a lot for women. There are many more opportunities and facilities. India has done very well in promoting the cause of women’s education. There are today large numbers of young women joining science. To some extent, I have also contributed to this and started many new initiatives and schemes to involve more women in science.

Why did you choose to focus on biotechnology and technology?

Biotechnology and technology are the areas of science closest to the requirements of humankind, specially to meet the basic needs of food, health, environment and security. I thought that by pursuing bioremediation, I would be able to contribute towards human welfare.

How did you get involved in working with the Indian government?

After coming back from the U.S., I started a new line of research, science administration and management. It was a promotion of science using a strong scientific knowledge base that was very helpful in the government system. I was involved in developing many policy papers, which even today are being used.

Why did you choose to focus on biotechnology and technology?

Biotechnology and technology are the areas of science closest to the requirements of humankind, specially to meet the basic needs of food, health, environment and security. I thought that by pursuing bioremediation, I would be able to contribute towards human welfare.

How did you get involved in working with the Indian government?

After coming back from the U.S., I started a new line of research, science administration and management. It was a promotion of science using a strong scientific knowledge base that was very helpful in the government system. I was involved in developing many policy papers, which even today are being used.

When were you an undergradulate, was it unusual for women in India to pursue higher education, especially in science?

There were many challenges that I faced as a female student. These included security and having to work harder to achieve the same goals as male students. Today, the atmosphere has changed and things have improved a lot for women. There are many more opportunities and facilities. India has done very well in promoting the cause of women’s education. There are today large numbers of young women joining science. To some extent, I have also contributed to this and started many new initiatives and schemes to involve more women in science.

What draws you to evolution and global warming?

My research ideas are inherently driven by my awe and fascination for Darwinian facts of biological evolution. Interestingly, Darwin himself was influenced and guided by the famous geologist Charles Lyell and ideas of uniformitarianism at the time. I was deeply impressed by the hard scientific beauty of the terrific link between evolution of Earth (and its climate) on one hand and evolution of life on the other hand. These ideas dovetail with my view of humans on earth (an evolved species on temporary residence permit, and in all likelihood to be outlived by insects, bacteria, etc.). This academic conditioning also propels me to use buzzwords of science (investigation, observation, evidence, data, hypotheses, awareness, rationality) to alert us to potential environmental catastrophe.

What do you do after hours?

I retain a deep passion for photography, reading, and cricket. Like many other scientists, I have a special fondness for arts, cinema, music, and may be considered epicurean at times.

When you were an undergradulate, was it unusual for women in India to pursue higher education, especially in science?

There were many challenges that I faced as a female student. These included security and having to work harder to achieve the same goals as male students. Today, the atmosphere has changed and things have improved a lot for women. There are many more opportunities and facilities. India has done very well in promoting the cause of women’s education. There are today large numbers of young women joining science. To some extent, I have also contributed to this and started many new initiatives and schemes to involve more women in science.

What draws you to evolution and global warming?

My research ideas are inherently driven by my awe and fascination for Darwinian facts of biological evolution. Interestingly, Darwin himself was influenced and guided by the famous geologist Charles Lyell and ideas of uniformitarianism at the time. I was deeply impressed by the hard scientific beauty of the terrific link between evolution of Earth (and its climate) on one hand and evolution of life on the other hand. These ideas dovetail with my view of humans on earth (an evolved species on temporary residence permit, and in all likelihood to be outlived by insects, bacteria, etc.). This academic conditioning also propels me to use buzzwords of science (investigation, observation, evidence, data, hypotheses, awareness, rationality) to alert us to potential environmental catastrophe.
A Purdue Partner for Developing and Sustaining Biodiversity

Morris Levy: Professor of Biological Sciences

Colombia is a remarkable place for anyone interested in the life and physical sciences. Though containing only 0.4 percent of Earth’s land area (about twice the acreage of Texas), Colombia is home to more than 10 percent of known plant and animal species. It also harbors a wealth of microbial diversity yet to be identified. The inventory, characterization, commercial development and sustainability of Colombian diversity have become a major research initiative called the Colombia-Purdue Institute for Advanced Scientific Research (CPIASR).

Colombian biodiversity research is being pursued via collaborations among colleagues at several Colombian universities and research consortia with Purdue faculty in the colleges of Science, Agriculture and Engineering, and at Purdue’s Discovery Park.

Biodiversity in Chocó

Among the least developed but biodiversity-rich areas of Colombia is the Pacific coastal region in the state of Chocó. Located in Chocó’s capital city, Quibdó, is the Universidad Tecnológica del Chocó (UTC), the region’s primary facility for higher education. With the support of Dean Jeffrey Roberts, I visited UTC and toured the Quibdó region, accompanied by Thomas Sors (center project manager for Bindley Bioscience Center) and Maria M. Levy (visiting research scientist) in December 2011. We consulted on UTC’s plans to build a new research facility called Boninova devoted to developing biodiversity in Chocó. We also began discussing collaborations on upgrading science education in this region, especially regarding the study and sustainable use of biodiversity.

In April, the rector (president) of UTCs, Eduardo A. García Vega, and a contingent of Boninova scientists visited Purdue to see our facilities and continue our collaborative planning. A highlight of this visit was a letter of intent, signed by the rector and our dean, to promote our continuing academic cooperation in education and research via faculty and student exchanges as well as joint research projects.

Use of aromatic and medicinal plants

One such project is emerging because of CPIASR efforts to foster collaborations between scientists in Chocó and elsewhere in Colombia. Professor Elena Stashenko is a renowned plant natural product chemist who leads a Colombian Center of Excellence, called CENIVAM. This facility is focused on chemical characterization and use of aromatic and medicinal plants. It is located at the Universidad Industrial de Santander (UIS) in the northern city of Bucaramanga.

CENIVAM has established an active collaboration with Purdue’s Bindley Bioscience Center researchers to expand both the chemical characterization and broad-spectrum bioactivity tests of the compounds they have isolated.

In May, I stood in the botanical garden surrounding the CENIVAM facility, which contains the plants they have previously analyzed. There were virtually no mosquitoes present at this garden, though these pests are common throughout Colombia.

Purdue’s direct involvement in the project will begin in 2013, when Stashenko and her students will collaborate with Bindley Bioscience Center researchers to expand both the chemical characterization and broad-spectrum bioactivity tests of the compounds they have isolated.

Another UIS professor, Jorge Fuentes, will be a sabbatical visitor with us in 2013. His research will characterize the microbial diversity associated with coal and petroleum deposits in Colombia and the potential use of these microbes for bioremediation or biofuel production. A third researcher, Oscar Segura, from the Medical School of the Universidad de Antioquia, is planning a research visit to Bindley Bioscience Center to study clinical protozoans in Colombian Plasmodium species, agents of malaria with complex life cycles. Sors is Purdue’s lead for this project.

Doctoral research of national relevance

A primary objective of the CPIASR mission is to recruit excellent Colombian students for Purdue doctoral programs where their research projects are relevant to applications in Colombia as well as beneficial for their Purdue mentors. This strategy provides impetus to the careers of our graduate students when they return to Colombia as well as improving possibilities of collaborative research funding. In Fall 2012, the Department of Biological Sciences welcomed two new Colombian doctoral students, Alejandro Salazar Villegas and Luis Ernesto Beltrán Forero. Salazar’s research interest concerns the impact of climate change on soil microbial diversity, he is mentored by Professor Jeffrey Dukes. Beltrán’s research interest concerns the sustainability of a unique Colombian ecosystem called the Páramo, a high mountain, cold and humid region surrounded by native Colombian aromatic plants. Purdue’s direct involvement in the project will begin in 2013, when Stashenko and her students will collaborate with Bindley Bioscience Center researchers to expand both the chemical characterization and broad-spectrum bioactivity tests of the compounds they have isolated.

Another UIS professor, Jorge Fuentes, will be a sabbatical visitor with us in 2013. His research will characterize the microbial diversity associated with coal and petroleum deposits in Colombia and the potential use of these microbes for bioremediation or biofuel production. A third researcher, Oscar Segura, from the Medical School of the Universidad de Antioquia, is planning a research visit to Bindley Bioscience Center to study clinical protozoans in Colombian Plasmodium species, agents of malaria with complex life cycles. Sors is Purdue’s lead for this project.

CFI-ASR-based collaborations on Colombian biodiversity research also involve Purdue faculty and students from the colleges of Engineering and Agriculture. Research topics include bio-nanomaterials, renewable bio-energy production, food security and nutritional improvement, bio-prospecting for pharmaceuticals and related commercialization.

The partnership between Purdue University and the research and education community of Colombia is ramping up. This year, 40 Colombian students applied to the Colombian government for funding support specifically for Purdue doctoral programs. Fifteen of these applicants were funded and we expect to see many of them here in Fall 2013, to join those that arrived this semester.

The Fulbright Commission of Colombia is actively assisting the CPIASR for graduate recruitment. Faculty and administrators from more than 20 of the top Colombian universities have participated in joint seminars and workshops with Purdue faculty, held both at Purdue and in Colombia. Sabbatical research exchanges have already begun and more are being scheduled. We are now working on developing research and international-distance learning communities using Purdue’s HubU computer facilities to further expand these interactions. With thanks to the many colleagues who have made this initiative possible, the future of our partnership with Colombia is filled with great opportunities.

For those interested in joining the CPIASR initiative, visit:
http://engineering.purdue.edu/CFI-ASR
2012 Class Notes

CORRECTION:

Randy A. Peppler (BS '80, MS '92, Earth and Atmospheric Sciences), Norman, OK, is an associate director at the University of Oklahoma Cooperative Institute for Mesoscale Meteorological Studies. He recently completed a dissertation titled "Knowing Which Way the Wind Blows: Weather Observation, Belief and Practice in Native Oklahoma."

In the spring 2012 Class Notes listing, his name was misspelled as Rand.
1950

James V. Nichols (BS '50, Science), Indianapolis, IN, Jun. 19.
Richard E. Weakley (BS '50, Science), Richmond, VA, Mar. 16.
Thomas L. Wright (BS '50, Biological Sciences), Rowlett, IN, Mar. 25.
Roger G. Wrigley Jr. (BS '50, Science), Dunkirk, IN, May 7.

Lionel Domash (MS '56, Science, PhD '52, Chemistry), Monroe Township, NJ, Feb. 3.
Donald I. Hamm (MS '54, Chemistry), Weatherford, OK, Feb. 3. He is survived by his wife, Joan Ann.
Joseph A. Kuc (BS '54, MS '73, PhD '55, AgriScience), Turlock, CA, Feb. 4.
Edward M. Chachko (BS '52, Science), Little Silver, NJ, March 25.
Paul R. Hill (BS '52, Science), Tuzson, AZ, May 17, 2012. He is survived by his wife, Arna Jane Hill.

Stephen Jukovich (BS '52, Chemistry), Muncie, IN, Feb. 29. He is survived by his wife, Mildred.
John R. Koons (BS '51, Science), New Palestine, IN, Mar. 12.
Barbara D. (Childress) Johnson (BS '51, Science), San Diego, CA, Apr. 24.

James E. Moneynon (BS '51, Science), Andover, IN, Dec. 12. He is survived by his wife, Marilyn.
Robert F. Fulton (MS '54, PhD '70, Chemistry), Rocky Mount, NC, October 29, 2011.
Carolyn (Sewell) Tamaoka (BS '56, Biological Sciences), Kailua, HI, Feb. 24.
Robert F. Fulton (MS '54, PhD '70, Chemistry), Rocky Mount, NC, Oct. 28, 2014.

David J. Howell (BS '58, Science), Crown Point, IN, Mar. 21. He is survived by his wife, Cynthia.

1960

Robert A. Spurgeon (BS '61, Physics, MS '64 Computer Science), Collegeville, PA, Feb. 27. He is survived by his wife, Diane (Miller) Spurgeon, and sons Stephen and Gregory Spurgeon.

Kenneth L. Stevenson (BS '61, MS '65, Chemistry), Fort Wayne, IN, Feb. 22. He is survived by his wife, Carmen.

Gerald D. Francoeur (BS '63, Science), Musconet, IN, Oct. 12, 2011.

James B. Rahfeldt (BS '63, Mathematics), Portage, MI, Feb. 20.

Ellen (Kirkpatrick) Beyerlein (BS '64, Biological Sciences), Homerassaa, FL, Jan. 5.

Forrest J. Frank (PhD '64, Chemistry), Bloomington, IN, Feb. 9.

Marilyn (Maxwell) Grissom (BS '64, Biological Sciences), Indianapolis, IN, Apr. 4.

Jack R. Adair (BS '66, Biological Sciences), Edgewater, FL, Apr. 5.

Thomas J. Hathaway (MS '65, Biological Sciences), Indianapolis, IN, Apr. 22.

Reynold S. Kebo (BS '65, Physics), Los Angeles, CA, Apr. 23, 2011.

Robert E. Michel (PhD '66, Chemistry), Leeland, NC, Jan. 31.

William L. Mellencamp (MA '67, Mathematics), Greenwood, IN, Feb. 4.

Juanita (Wist) Bullock (BS '69, Biological Sciences), Riverside, CA, Feb. 10. She is survived by her husband, Robert.

Maurice D. Smith (BS '69, Statistics), Indianapolis, IN, Mar. 1.

Larry Loos (MS '69, Physics, PhD '73), Cape Girardeau, MO, Feb. 30, 2009.

1970

Dugenia Tangile (BS '72, Physics), Takoma Park, MD, Jan. 14.

George C. Casella (MS '74, PhD '77, Statistics), Gainesville, FL, Jun. 17.

Bruce A. Kirschen (BS '74, Biological Sciences), Detroit, MI, Feb. 8.

Steven Bruce Peter (MS '74, Chemistry), Kentuck, PA, Feb. 22.

Steven Douglas Miller (BS '75, Mathematics), Delaware, OH, Jun. 9.

James F. White (BS '79, Chemistry, MS P '77, PhD P '79, Pharmacy), Carlisle, MA, Feb. 3. He is survived by his wife, Linda.

Lee E. Howard (MS '74, PhD '84, Physics), Bowie, MD, Jun. 19.

Joel A. Shapiro (PhD '74, Biological Sciences), Rocklin Hills, CA, Apr. 28. He is survived by his wife, Katherine.

1990

Andrew W. Garcia (PhD '91, Earth and Atmospheric Sciences), Vicksburg, MS, Nov. 16, 2011.
Katitza M. Garda (BS '93, Computer Science), El Paso, TX, Jun. 31. She is survived by her husband, Gregory.

Kirk A. Kortokrax (BS '94, Biological Sciences), Chattanooga, TN, Feb. 10.

Christopher Newkl (BS '94, Biology), Orlando, FL, Dec. 18.

From the time that I was about 4 or 5 years old, I was fascinated by the different shades of skin color. As anintroverted child, desperately seeking to pass time spent in public, I would walk around a room and try to categorize skin tones. The colors would range from very, very pale to a dark tone and numbered as high as 50 different shades, depending on the room population. This childhood fascination, while I was growing up in central Georgia, served a twofold purpose: it was my introduction to scientific exploration and to the roots of biases and prejudices.

The words of Dr. Martin Luther King Jr. helped shape my worldview: “I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin, but by the content of their character.” As I look at the students enrolled in the College of Science, I am excited that the faculty and staff can play a major role in helping shape their world, regardless of the color of their skin. These students will acquire skill sets that will enable them to do great things in the world. Their propensity for these skills began during childhoods in rural areas, inner cities and countries far and wide.

In the College of Science, we seek to celebrate the diverse backgrounds of our students, staff and faculty by working with each other on many projects and stepping outside of our comfort zones to learn more about the richness of the cultures and heritages represented across the college.

I challenged myself as a doctoral student in Purdue’s Department of Biological Sciences — and still do as a College of Science employee — to interact as often as I can with students whose backgrounds are different from mine. I have met some amazing people and have learned about lands that perhaps, one day, I will visit.

Global diversity is ever increasing. If young scientists are to make a true mark on the world, it is important that we train undergraduates to make a true mark on the world, it is important that we train undergraduates and graduate students to value and embrace diversity and develop skills and attitudes that will enable them to do great things in the world.

— Zenephia Evans, director of Multicultural Science Programs and associate director of science diversity in the College of Science

Learning and Growing from Around the World

Photo by Mark Simons

32 | insights

CLASS NOTES

33 | insights

LAST WORD

MANY PERSPECTIVES, ONE VOICE

DIVERSITY IN THE COLLEGE OF SCIENCE

UNDERGRADUATE

International students 1,032
African Americans 83
Women 1,200
Hispanics 118
Native Americans 4
Native Hawaiian or Other Pacific Islander 2

GRADUATE

International students 585
African Americans 30
Women 325
Hispanics 27
Native Americans 5
Native Hawaiian or Other Pacific Islander 1

fall 2012
Since her first sewing lesson in fourth grade, this creative spirit has stitched her way into a bright future. She loves sewing and fashion design, but math is her thing. She sees the two as the same, but different; both involve figuring out patterns. Meet math major Dana Smith at:

www.purdue.edu/fivestudents/danasmith.