MANY PERSPECTIVES
ONE VISION

INSIDE
:: Geosciences in the Cinema :: Field Notes Colombia
If you can read the text at right, you can read binary code. What you’re seeing is the feature on the 50th anniversary of the computer science department that appears on page 22 translated into binary code. A binary code is a way of representing text or computer processor instructions by the use of the binary number system’s two binary digits 0 and 1. This is accomplished by assigning a bit string to each particular symbol or instruction.
Greetings,

When undergraduate Ravindran Rajesvaran was considering colleges from his hometown of Kuala Lumpur, he settled on Purdue’s College of Science because of the reputation of our actuarial science program and the University’s large Malaysian community.

It is that combination of academic prowess and diverse community that for decades has drawn students and faculty from around Indiana, across the country and around the world to Purdue, and helps us in our quest to use globally informed teams to solve world challenges.

In this issue of Insights, we take a look at diversity in the College of Science through the lens of photographer Steven Yang. We let the faces and voices of our students — undergraduates and graduate students from down the road and across the hemisphere, and from America’s pueblos to rural Colombia — tell the story of our wonderfully mixed community. Many of them are a long way from home, but all say they have found a family here at Purdue and have benefited from a learning environment in which being a part of diverse classroom and laboratory teams has expanded their horizons and become an expected norm.

You’ll also meet faculty members Chris Andronicos, professor of earth, atmospheric, and planetary sciences, and a national leader of the Society for Advancement of Chicanos and Native Americans in Science (SACNAS), and Edray Goins, a math professor. Both are committed to drawing greater numbers of underrepresented students into the sciences.

And you’ll hear from a mother-and-son team who came to Purdue from India decades apart, each to pursue scientific excellence — Manju Sharma, president and executive director of the Indian Institute of Advanced Research, and Amit Prakash Sharma, a recent winner of India’s coveted Shanti Swarup Bhatnagar Prize for Science and Technology. Another bio student, Zenephia Evans, tells the story of growing up to make a living ensuring diversity as director of Multicultural Science Programs at Purdue.

This issue of Insights also celebrates the 50th anniversary of our Department of Computer Science, the first such department in the country when it was established in 1962.

In June, Indiana Governor Mitch Daniels was named as the University’s next president. He will begin his term in January. Currently serving as interim president is Timothy Sands, Purdue’s provost. The College of Science looks forward to the innovations and ideas the new administration will bring to the University.

Jeffrey T. Roberts
Frederick L. Hovde Dean of the College of Science

Features

04 Fun with Film
Geosciences in Cinema separates fact from fiction

22 Happy Anniversary
Computer Science celebrates 50 years

24 Alumni Profile
Math grad Lisa Hodson-Walker moves from the world of finance to community-supported agriculture

26 Q & A
It’s all in the family for biology graduate Amit Sharma and his mother, Manju Sharma, a one-time Purdue postdoc

Departments

19 Breakthroughs

30 Class Notes

33 Last Word

Correction
LEAD is the acronym for Learning through Experience and Awareness in Diversity (LEAD), a program overseen by Purdue’s Diversity Resource Office. The name of the program was incorrect in the spring issue of Insights.

Cover Story | 06

Purdue’s science students like Native American Kyle Bemis (on the cover) and Mariana Smit Vega Garcia of Brazil (above) come from down the road and across the hemisphere. Each brings personal experience and perspective to a learning environment in which being a part of diverse classroom and laboratory teams helps move Purdue forward in its quest to find globally informed solutions to world challenges.

Photography by Steven Yang
“I could not have planned it better,” says Andy Freed, associate professor of earth, atmospheric, and planetary sciences, who created the class in 2005 with colleague Noah Diffenbaugh, who now teaches at Stanford University.

Geosciences in the Cinema is popular with science majors and nonmajors alike. Since its first semester, the class of 150 students has often had a waiting list. The course was cited as one of Purdue’s top-three “coolest” classes at Purdue in a recent issue of the student newspaper, The Exponent.

Freed, who now teams with colleague Matt Huber, uses movie and YouTube clips and full-length features to help educate students on global warming, volcanoes, severe weather and, yes, earthquakes.

“I taught an earthquakes and volcanoes class when I first came to Purdue and it was for nonmajors,” Freed recalls. “I struggled a bit connecting with the students. A lot of the nonmajors fear the natural sciences, and I didn’t want the class to be dry. So, I started showing some clips from movies to demonstrate some of the processes. I show them some tsunamis and some volcanic eruptions. Students seem to pay more attention and ask more questions after they view some clips. A lot of the questions are ‘Is that real? Does that really happen?’”

This fall, the class meets Tuesdays and Thursdays with an optional movie on Wednesday evenings. The quality of the films varies, on purpose. Some are blockbusters like 2012 and the Day After tomorrow where the computer-generated imagery (CGI) stuns and the writing has viewers on the edges of their seats. Others include lesser-known, straight-to-DVD releases. One of the lesser-knowns is Aftershock, a gripping drama from China centering on life after a massive earthquake. One of the highlights this fall is the 2003 disaster film, The Core, starring Aaron Eckhart and Hilary Swank, to help illustrate what goes on inside our planet.

The top criterion for the movies is that the science must be highly evident but it doesn’t always have to be 100 percent correct. Movies that fudge the science can offer up some of the best class discussion, Freed says.

“Even the ones that are bizarre or completely incorrect get them thinking. Those are especially powerful because they are so unbelievable that students have to ask if they are true,” Freed says. “Of course, there are some very real processes that are pretty unbelievable, too.”

Freed’s research expertise is in earthquakes and planetary science. One of his favorite titles to show in class is a 2005 made-for-TV movie called Supervolcano.

“The tagline is ‘It’s a true story. It just hasn’t happened yet,’” Freed says. “The movie looks at Yellowstone Park and the fact that it is a super volcano. It’s had three super eruptions in the last 2 million years. Its last was 600,000 years ago, and we’re coming due. This movie is about what happens if a super eruption happens today. The science is just spot on.”

Sean Harmison, a senior studying industrial distribution in the College of Technology, is one of the many non-science majors in the class. Friends recommended the class to him, and he is finding the use of films and clips to learn geoscience concepts to be working already.

“It’s a nice way to change things up instead of PowerPointing you to death,” Harmison says.

Science students packed an auditorium for that day’s lesson in a favorite course, Geosciences in the Cinema. The projector hanging from the ceiling started shaking and the image on the wall began to quiver. No IMAX theater. The class, in which students watch and then discuss movies such as Twister and The Day After tomorrow, was experiencing a real-life earthquake centered in Virginia.

Fall 2012 movies

- The Core
- 2012
- Tsunami: The Wave That Shook the World
- Evolution
- Jurassic Park
- Ice Age
- Dante’s Peak
- Supervolcano
- Deep Impact
- The Day After Tomorrow
- Twister
- The Perfect Storm

Andy Freed

Fall 2012 | 5

Photo by: Mark Simons
Boilermakers know that better-informed solutions are the result of multiple perspectives, unique experiences and fully optimized knowledge centers. We draw from the wealth of our diverse scientific community to build a university that is prepared to contribute innovative solutions for today’s global challenges. Meet Purdue’s Global Scientists.

By Linda Thomas Terhune
Photography by Steven Yang

Many Perspectives One Vision

Ravindran Rajesvaran

Kuala Lumpur, Malaysia | Actuarial Science and Mathematical Statistics | Senior

Research Focus: Estimation of the Agency for Healthcare Research and Quality (AHRQ)’s Prevention Quality Indicator for Uncontrolled Diabetes (PQI14) for various population demographics in Indiana and the United States. Conducted statistical significance tests to determine the differences in the PQI14 estimates between various populations and developed a logistic regression model that identified significant predictors for the indicator. Hopes to pursue graduate study in quantitative finance, statistics or economics.

“Working with people from different backgrounds can be interesting, because you get exposed to different ways of thinking and skills that are required to approach a problem.”
WHEN MY MOM SEES PHOTOS OF MY FRIENDS, SHE JOKES THAT IT’S LIKE A U.N. MEETING. INTERACTING WITH SO MANY PEOPLE FROM DIFFERENT PLACES AND DIFFERENT BACKGROUND, HABITS AND PERSPECTIVES ON LIFE HAS BEEN INCREDIBLY ENRICHING FOR ME. THIS EXPERIENCE BROADENS OUR HORIZONS AND TEACHES US HOW TO APPROACH THINGS FROM A DIFFERENT SIDE, WHICH IS SO IMPORTANT IN ACADEMIA AND IN LIFE IN GENERAL.

DIVERSITY HAS MANY FORMS, NOT ONLY DIFFERENCES OF GENDER, ETHNICITY AND CULTURE, BUT ALSO GAPS IN EXPERTISE AND PERSPECTIVES. DURING THE PROBLEM-SOLVING PROCESS, PEOPLE WHO HAVE DIFFERENT BACKGROUNDS, SKILLS AND KNOWLEDGE WILL CONTRIBUTE MORE IDEAS THAN GROUPS WITH A SINGLE ORIENTATION.

SÃO PAULO, BRAZIL | Mathematics | Doctoral candidate

RESEARCH FOCUS: Partial differential equations. Plans to become a professor.

TIANJIN, CHINA | Physics | Doctoral candidate

RESEARCH FOCUS: Condensed matter physics. Currently exploring electronic transport properties in low-dimensional electron systems.

MARIA VEGA GARCIA

HELIN CAO

DIVERSITY HAS MANY FORMS, NOT ONLY DIFFERENCES OF GENDER, ETHNICITY AND CULTURE, BUT ALSO GAPS IN EXPERTISE AND PERSPECTIVES. DURING THE PROBLEM-SOLVING PROCESS, PEOPLE WHO HAVE DIFFERENT BACKGROUNDS, SKILLS AND KNOWLEDGE WILL CONTRIBUTE MORE IDEAS THAN GROUPS WITH A SINGLE ORIENTATION.
“With an abundance of cultures and backgrounds, we will always have new ways to look at the world and discover something amazing. If we can’t communicate across the cultures of different racial and ethnic backgrounds, how can we possibly hope to communicate between disciplines? Now more than ever, with the sciences becoming increasingly interdisciplinary, diversity is not just important, but a necessity.”

ROBERT NESS

“Science programs often have students with a narrow range of past experiences and future plans. More student diversity means more alumni doing different things with their degrees and hence more career opportunities for all students.”

KYLE BEMIS

INDIANAPOLIS, INDIANA (member of Zuni Tribe) | Statistics | Doctoral candidate

RESEARCH FOCUS: Developing statistical and computational methods for the analysis of DESI imaging mass spectrometry data.

HARRISBURG, PENNSYLVANIA | Statistics | Doctoral candidate

RESEARCH FOCUS: Big data, with focus on network biology.
ROBY DOUILLY

DIVERSE COMMUNITIES ARE ABLE TO COME UP WITH INNOVATIVE IDEAS AND APPLY THEM TO SPECIFIC OBJECTIVES. THIS REALLY ENRICHES RESEARCH.

PORT-AU-PRINCE, HAITI | Geophysics | Doctoral candidate

RESEARCH FOCUS: Earthquake seismology and kinematic/dynamic fault modeling. The study will help scientists understand the physics behind the rupture propagation from one active fault to another in the 2010 Haiti earthquake.

DARRYL REANO

ALLOWING UNDERREPRESENTED POPULATIONS TO EXPRESS THEIR VIEWPOINTS ALLOWS NEW IDEAS TO GAIN EXTRA DIMENSIONS AND DEVELOP A WIDER FOUNDATION THAT CAN SUPPORT INTERNATIONAL GROWTH. IT ALSO HELPS TO LESSEN THE EXCLUSIONARY ATTITUDE THAT WESTERN SCIENCE HAS MAINTAINED FOR MANY YEARS.

ACOMA PUEBLO, NEW MEXICO | Earth, Atmospheric, and Planetary Sciences | Master’s candidate

RESEARCH FOCUS: Geology — Detrital zircon geochronology, focusing on the provenance of sediments in the distal Cordilleran foreland basin. Also, he hopes to run a diversity center on a university campus.
COMING FROM AN ALL-FEMALE HIGH SCHOOL, WITH NO COMPUTER COURSES, I KNOW FIRSTHAND THE DIFFICULTIES FEMALES FACE WHEN ATTEMPTING TO ATTAIN A TECHNOLOGY-RELATED DEGREE. I WANT TO TEACH YOUNG WOMEN THAT A COLLEGE DEGREE IN TECHNOLOGY IS NOT IMPOSSIBLE KEEPING FEMALES IN THE FIELD HELPS ENRICH IT BY BREAKING THE BARRIER THAT SOCIETY HAS PLACED ON IT IN STATING THAT THE FIELD IS ONLY FOR NERDY MEN.

GOALS: Travel the world, spend a few years in industry, then settle into a career at an all-female high school teaching young women about computer science, programming and information technology.

DIVERSITY ENRICHES THE COMMUNITY BY BRINGING DIFFERENT PERSPECTIVES TO A RESEARCH PROJECT. THE VOICE NOT ONLY REPRESENTS A SINGLE INDIVIDUAL, BUT IS THE VOICE OF MANY OTHERS.

RESEARCH FOCUS: Data mining.
KUALA LUMPUR, MALAYSIA | Chemistry | Senior

RESEARCH FOCUS: Inorganic/organic chemistry and alternative energy. Hoping to help solve the energy crisis.

SOON CHEONG KWAN

UNDERREPRESENTED POPULATIONS OFTEN HAVE UNIQUE EXPERIENCES TO SHARE WITH OTHERS. MULTIPLE PERSPECTIVES, SOCIAL BACKGROUND AND CULTURAL DIFFERENCES DO GIVE MORE COLORS TO OUR SOCIETY.

INDIANAPOLIS, INDIANA | Chemistry | Senior

RESEARCH EXPERIENCE: Cell cycles and the ways in which cancer proliferates, and quantum chemistry and quantum computing — exploring new ways of factoring prime numbers.

TIM JOHNSON

PEOPLE FROM DIFFERENT BACKGROUNDS BRING DIFFERENT PERSPECTIVES, WHICH ALLOW FOR DIFFERENT WAYS TO APPROACH A PROBLEM AND, SOMETIMES, EVEN BETTER ANSWERS AND BETTER SOLUTIONS TO THE PROBLEM.
REFLECTION: FACULTY AND DIVERSITY

EDRAY GOINS, a math professor, grew up in South Central Los Angeles with one dream—to attend Caltech. In 1991, he did just that when he enrolled as a freshman to study math and physics. He was one of 25 African-American students on a campus of 2,510 students that had no black faculty. Goins set about creating a community for the African-American students by establishing the Caltech chapter of the National Society of Black Engineers—a group that, coincidentally, was founded at Purdue.

“At the time, there were so few of us, and there was a history of many black students not making it through the program, that we had to look out for each other,” Goins recalls. “We had study groups, meetings, scholarship information sessions, and more. I had no mentoring as an undergraduate and spent a lot of time wondering why not. I made it a point when I returned to Caltech as a postdoc to take on several students so they didn’t fall through the cracks.” In addition to mentoring students and taking them to conferences, he recently organized a lecture series featuring women of color in mathematics.

“I hope students, undergraduate and graduate, see as many people as possible,” he says. “Let’s be exposed to as diverse a background as possible.”

CHRIS ANDRONICOS, associate professor of earth, atmospheric, and planetary sciences, grew up in Albuquerque, New Mexico, his father was the governor of Sandia Pueblo and his mother was an Indian artist. He spent his undergraduate years at the University of New Mexico, then went on to Princeton for a doctorate and took a faculty position at the University of Texas at El Paso and, later, Cornell. Andronicos joined the Purdue faculty in January 2012, and, although far from his homeland, he has never forgotten his Native American roots or the multicultural childhood community that colored his worldview.

“It is very important to have a lot of different perspectives in decision making, because if you look at mistakes people make, they often involve not being aware of something, be it scientific process, philosophy, cultural issues or taboos,” Andronicos says.

As interim president of the national Society for the Advancement of Chicano and Native Americans in Science (SACNAS), he is committed to bringing students of diverse backgrounds into science.

PURDUE PHYSICISTS PART OF DISCOVERY OF NEW PARTICLE THAT COULD BE HIGGS BOSON

Physicists Daniela Bortoletto and Ian Shipsey were part of a historical event in July as scientists working on the biggest international experiment in particle physics announced the discovery of a new particle that may be the long-sought Higgs boson.

Purdue’s particle physics group has been a part of the multi-year search for the elusive particle, which could confirm the Standard Model of physics and provide insight into how the universe formed.

Bortoletto, the Edward Purcell Distinguished Professor of Physics, and Shipsey, the Julian Schwinger Distinguished Professor of Physics, attended the announcement on July 4 at the European Organization for Nuclear Research, or CERN, laboratory in Geneva, Switzerland.

“On a day where fireworks lit skies across America, the world of science unveiled explosive news concerning the long-time elusive Higgs boson particle,” says Shipsey, who also is the co-coordinator of the Large Hadron Collider Physics Center at Fermilab.

“The material is superconductor with alien life, according to experts at Purdue, but don’t expect the invasion scenario presented by summer blockbusters like Men in Black 3 or Prometheus,” says Jay Melosh, a distinguished professor of earth, atmospheric and planetary sciences and physics and aerospace engineering at Purdue. “We are talking little green microbes, not little green men,” says Melosh.

“Purdue’s particle physics group has been a part of the multi-year search for the elusive particle, which could confirm the Standard Model of physics and provide insight into how the universe formed,” says Shipsey, who also is the co-coordinator of the Large Hadron Collider Physics Center at Fermilab.

“Many researchers studying superconductor activity strive to create a clean, pure, perfect material’s unique abilities. Regular superconductors are not perfect, and if they were, they would be much easier to detect and work with. We’ve discovered one more key to unlock the mysteries of the universe.”

EVIDENCE OF LIFE ON MARS COULD COME FROM MARTIAN MOON

A mission to a Martian moon could return with alien life, according to experts at Purdue, but don’t expect the invasion scenario presented by summer blockbusters like Men in Black 3 or Prometheus.

“Purdue’s particle physics group has been a part of the multi-year search for the elusive particle, which could confirm the Standard Model of physics and provide insight into how the universe formed,” says Shipsey, who also is the co-coordinator of the Large Hadron Collider Physics Center at Fermilab.

“The material is superconductor with alien life, according to experts at Purdue, but don’t expect the invasion scenario presented by summer blockbusters like Men in Black 3 or Prometheus,” says Jay Melosh, a distinguished professor of earth, atmospheric and planetary sciences and physics and aerospace engineering at Purdue. “We are talking little green microbes, not little green men,” says Melosh.

“Many researchers studying superconductor activity strive to create a clean, pure, perfect material’s unique abilities. Regular superconductors are not perfect, and if they were, they would be much easier to detect and work with. We’ve discovered one more key to unlock the mysteries of the universe.”

SUPERCONDUCTOR ‘FLAWS’ COULD BE KEY TO ITS ABILITIES

Erica Carlson, associate professor of physics, led a team that mapped seemingly random, four-atom-wide dark lines of electrons seen on the surface of copper-oxynitride based superconducting crystals. The team uncovered a pattern in these flawed lines, which are separate from the expected structure of the material, and discovered that they exist throughout the crystal. The findings suggest the lines could play a role in the material’s superconductivity at much higher temperatures than others.

“This material is ceramic, like your dinner plates, and it has no business conducting electricity, but under the right conditions it conducts electricity perfectly with zero energy loss,” Carlson says. “A better understanding of how and why this superconductor works could help us design better ones. If we can create a superconductor that works at high enough temperatures, it could transform how we use and generate energy.”

Breakthroughs are condensed from news reports by Purdue science writers Elizabeth Gardner, Emil Venere and Judith Barra Austin.
HOLE IN ONE

Purdue Scores Top Mind in Atomic, Molecular and Optical Physics

By Tim Bruk

As Chris Greene’s knowledge in atomic theoretical physics increased, so did his passion for golf.

A natural at the sport since his teenage years, Greene pursued golf throughout his schooling as a physics and math major at the University of Nebraska and into his teaching years — graduate studies at the University of Chicago, postdoctoral work at Stanford University, his first faculty position at Louisiana State University for eight years and a 22-year stint at the University of Colorado.

“I was trying to make this hard decision between physics and golf. Until about 12 years ago, I had to have a golf club in my hand every day in the summer,” says Greene, a native Nebraskan. “I decided to go for physics and that was the best decision I’ve made in my life.”

Today, Greene has left his former 2 handicap behind and brought his expertise in atomic, molecular and optical physics (AMO) and the physics of ultra cold atoms to Purdue. He was hired over the summer as a professor of physics and will start teaching graduate-level classes in the spring semester.

Greene is renowned in atomic, molecular and optical physics, a field that studies matter-matter and light-matter interactions. He believes this field is growing quickly and that was the best decision I’ve made in my life.”

Though Greene has driven away from serious golf aspirations, he does like to get out on the links occasionally. Does Greene see a correlation between golf and physics? Does his knowledge of physics help him with his golf aspirations, he does like to get out on the links occasionally. Does Greene see a correlation between golf and physics?

“I used to delude myself into thinking that knowing all of this physics could make me a better golfer,” Greene says. “Eventually I’ve come to the conclusion that I play my best golf when I go out there and just whack it — sort of a John Daly frame of mind works better for me, I think, instead of trying to think what kind of spin on the ball and where my putts are going to land. I’m sort of a once a year golfer now. I stopped deluding myself. I’d be hitting the ball in the water, in the sand and out of bounds and I would think to myself ‘I could be at home doing physics.’”

Greene did not enter the theoretical side of physics until his graduate studies at Chicago. He became a protégé of Ugo Fano, a renowned theoretical physicist and former student of quantum mechanics propagator Enrico Fermi and nuclear reactor developer Enrico Fermi. Greene took well to the theory side of physics, taking a look at properties of few-electron atoms and electron correlation. Ultra cold physics was still about a decade away when laser cooling started being able to freeze atoms down to about a millionth of a degree above absolute zero.

Upon moving to Colorado, Greene discovered ultra cold physics at the JILA scientific institute on the Boulder campus. JILA was home to two of the ultra cold collision physics field’s first three Nobel Prize winners in Eric Cornell and Carl Wieman.

Today, Greene’s expertise is in both ultra cold with AMO physics. He hopes these fields will interest Purdue students.

“Having a school with a philosopshy, unified approach and style to imbue a new generation of theorists with the style of doing physics, to me is really exciting and I’m very enthusiastic about that,” Greene says.

Though Greene has driven away from serious golf aspirations, he does like to get out on the links occasionally. Does Greene see a correlation between golf and physics? Does his knowledge of physics help him with his golf aspirations, he does like to get out on the links occasionally. Does Greene see a correlation between golf and physics?

“I used to delude myself into thinking that knowing all of this physics could make me a better golfer,” Greene says. “Eventually I’ve come to the conclusion that I play my best golf when I go out there and just whack it — sort of a John Daly frame of mind works better for me, I think, instead of trying to think what kind of spin on the ball and where my putts are going to land. I’m sort of a once a year golfer now. I stopped deluding myself. I’d be hitting the ball in the water, in the sand and out of bounds and I would think to myself ‘I could be at home doing physics.’”

Greene did not enter the theoretical side of physics until his graduate studies at Chicago. He became a protégé of Ugo Fano, a renowned theoretical physicist and former student of quantum mechanics propagator Enrico Fermi and nuclear reactor developer Enrico Fermi. Greene took well to the theory side of physics, taking a look at properties of few-electron atoms and electron correlation. Ultra cold physics was still about a decade away when laser cooling started being able to freeze atoms down to about a millionth of a degree above absolute zero.

Upon moving to Colorado, Greene discovered ultra cold physics at the JILA scientific institute on the Boulder campus. JILA was home to two of the ultra cold collision physics field’s first three Nobel Prize winners in Eric Cornell and Carl Wieman.

Today, Greene’s expertise is in both ultra cold with AMO physics. He hopes these fields will interest Purdue students.

“Having a school with a philosopshy, unified approach and style to imbue a new generation of theorists with the style of doing physics, to me is really exciting and I’m very enthusiastic about that,” Greene says.

Though Greene has driven away from serious golf aspirations, he does like to get out on the links occasionally. Does Greene see a correlation between golf and physics? Does his knowledge of physics help him with his golf aspirations, he does like to get out on the links occasionally. Does Greene see a correlation between golf and physics?

“I used to delude myself into thinking that knowing all of this physics could make me a better golfer,” Greene says. “Eventually I’ve come to the conclusion that I play my best golf when I go out there and just whack it — sort of a John Daly frame of mind works better for me, I think, instead of trying to think what kind of spin on the ball and where my putts are going to land. I’m sort of a once a year golfer now. I stopped deluding myself. I’d be hitting the ball in the water, in the sand and out of bounds and I would think to myself ‘I could be at home doing physics.’”

Greene did not enter the theoretical side of physics until his graduate studies at Chicago. He became a protégé of Ugo Fano, a renowned theoretical physicist and former student of quantum mechanics propagator Enrico Fermi and nuclear reactor developer Enrico Fermi. Greene took well to the theory side of physics, taking a look at properties of few-electron atoms and electron correlation. Ultra cold physics was still about a decade away when laser cooling started being able to freeze atoms down to about a millionth of a degree above absolute zero.

Upon moving to Colorado, Greene discovered ultra cold physics at the JILA scientific institute on the Boulder campus. JILA was home to two of the ultra cold collision physics field’s first three Nobel Prize winners in Eric Cornell and Carl Wieman.

Today, Greene’s expertise is in both ultra cold with AMO physics. He hopes these fields will interest Purdue students.

“Having a school with a philosopshy, unified approach and style to imbue a new generation of theorists with the style of doing physics, to me is really exciting and I’m very enthusiastic about that,” Greene says.
OCT. 1962

Department of Computer Science is created — the first in the nation. Samuel Conte is founding head. It is a division of mathematical sciences along with the departments of Mathematics and Statistics, and is located in the Engineering Administration Building.

- 5 faculty members (not all full-time), 20 courses, 24 master’s and doctoral students.

1963

First master’s degree in computer science is awarded.

1966

First PhD in computer science is awarded.

1967

- The department moves to the Mathematical Sciences Building. The Computer Science Center occupied the two floors below ground. The department occupied the fourth floor.
- First bachelor’s degree in computer science is awarded.
- 80-100 freshmen enroll annually.
- 50 freshmen enroll annually.

1970-74

Over 500 new freshmen enter the program, resulting in greatly increased class sizes and corresponding shortage of faculty, space and computing facilities.

1975-77

The department introduces the first supervised computing and teaching laboratories at Purdue.

1978

- The department installs a VAX 11/780 computer system running UNIX, the first at a university.
- ASCII terminals go into faculty offices and email is sent via uucp to B席. Signal lights installed to indicate system status.
- 200 freshmen enroll.

1979

- Peter Denning becomes the second head of the department.
- The department moves to the newly renovated Memorial Gymnasium (now known as Felix Haas Hall), while also retaining space in the Math, Physics and Recitation buildings.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.

1981

- Over 500 new freshmen enter the program, resulting in greatly increased class sizes and corresponding shortage of faculty, space and computing facilities.
- The department moves its headquarters to the newly renovated Memorial Gymnasium (now known as Felix Haas Hall), while also retaining space in the Math, Physics and Recitation buildings.
- The department introduces the first supervised computing and teaching laboratories at Purdue.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.

1985

- The department moves its headquar ters to the newly renovated Memorial Gymnasium (now known as Felix Haas Hall), while also retaining space in the Math, Physics and Recitation buildings.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.

1986

- The Xinu operating system is developed and used for instruction and research.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.

1987

- Ahmed Sameh becomes the fourth head of the department.
- John Rice becomes the third head of the department.

1992

- Purdue establishes a chapter of Upsilon Pi Epsilon (UPE), the International Honor Society for the Computing Sciences.
- Ahmed Sameh becomes the fourth head of the department.

1995

- The department moves its headquar ters to the newly renovated Memorial Gymnasium (now known as Felix Haas Hall), while also retaining space in the Math, Physics and Recitation buildings.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.
- The department installs a VAX computer system running UNIX, the first at a university.

1998

- The Center for Education and Research in Information Assurance and Security (CERIAS) is formed at Purdue from the COAST lab and is one of world’s leading centers for research and education in areas of information security.

2002

- The Center for Education and Research in Information Assurance and Security (CERIAS) is formed at Purdue from the COAST lab and is one of world’s leading centers for research and education in areas of information security.
- Susanne Hambrusch becomes the fifth head of the department.

2007

- Aditya Mathur becomes the sixth head of the department.
- Sunil Prabhakar serves as interim head of the department. He is named permanent head in 2012.

2006

- The department moves into the Lawson Computer Science Building, which is named for Richard (MS '68, HDR '06) and Patricia Lawson.
- The Center for Education and Research in Information Assurance and Security (CERIAS) is formed at Purdue from the COAST lab and is one of world’s leading centers for research and education in areas of information security.

2010

- The Center for the Science of Information is established at Purdue as an NSF Science and Technology Center.

FALL 2012

- 787 undergraduates
- 245 graduate students
- 50 faculty members
SILVER LINING
A Life of Finance and Farming
By Linda Thomas Terhune

City girl leaves steel town to attend college in farmland. Returns to city life for a job in the automobile industry. Leaves city once again to buy and run a farm. This is the story of Lisa Hodson-Walker, a 1986 Purdue math graduate who now operates 100-acre Silverwood Organic Farm just outside Boston.

Hodson-Walker’s agri-journey began in Pittsburgh, Pennsylvania, where she grew up swimming, lifeguarding, playing kickball, and on the drums in the high school marching band. She loved math and was so excited when she got her Purdue acceptance letter that she announced the news to her parents by placing the stairwell in the family home with information sheets from the packet.

“When I saw Purdue for the first time, it was love at first sight,” she recalls. Last spring, while accepting a Distinguished Alumni Award from the College of Science, she looked back on the 25 years since she left campus. “Unchanged is the solid foundation that the mathematics degree from Purdue has provided me and the great sense of pride that I experience when I tell someone I majored in mathematics at Purdue University.”

After receiving her degree in applied math and secondary math education, she studied at Indiana University’s Kelley School of Business. There, she received an MBA in finance and met her husband, Jonathan, a British citizen studying on a Fulbright Scholarship (his family had farmed for a generation in England). They married while attending graduate school and moved back to Purdue’s campus: “Unchanged is the solid foundation that the mathematics degree from Purdue has provided me and the great sense of pride that I experience when I tell someone I majored in mathematics at Purdue University.”

“I had never driven a stick shift, let alone with my other hand and on the wrong side of the road,” she says, laughing. For a woman who counts the electric guitar as a hobby, this wasn’t too much.

In 1992, the Hodson-Walkers decided to return to the United States, but weren’t sure how or where. Each made a list of top-two destinations and then they explored their options. Boston eventually won out and Lisa landed a marketing job with Staples.

As vice president of marketing for Staples, Hodson-Walker had a marketing statistical group reporting to her, using a complicated regression model to analyze customer behavior. She used that information to make decisions on how to spend the company’s multimillion-dollar marketing budget.

“The role of mathematics in the business world has changed significantly over the years,” she says. “When I graduated from Purdue, there was a relatively narrow range of job opportunities for math majors. Now, with the vast amount of data and information available in the workplace, career opportunities for those with strong analytical skills have increased dramatically.”

One day, while returning from a mall outside Boston, Hodson-Walker got lost. She was in the far western suburbs of the city, in a bucolic town named Sherborn. She fell in love with the place and the couple soon moved out of the city and to a historic New England farm. They also began having children.

When the second child was born—they now have four, ages 6 to 13—Lisa left full-time corporate life to help her husband start Silverwood Partners, an investment banking firm. “Something, though, was missing.”

“I was ready to do something different,” Lisa recalls. For years, they had their farmland and sold the hay to a local horse farm. That wasn’t quite enough. The couple also had a large family garden, which was getting closer to being different enough. “It was a dream to bring the historic farmland back into production. So, we decided to do what we know and love and try an organic vegetable farm,” she says.

First planted in 2009—with her husband on an antique John Deere pulling a water wheel planter upon which their four children perched and transplanted seedlings—the Silverwood Organic Farm (www.silverwoodorganicfarm.com), launched with 20 members.

The Hodson-Walkers are constantly tweaking their operation, and have recently partnered with other organic farmers in the area including a poultry farm and an apiary. They also started a farm-to-hospital initiative for employees at two local hospitals and low-income pediatric patients. In addition, they donate more than 6,000 pounds of fresh produce to local food pantries and shelters.

Looking back at a life that has taken her from city to farmland to corporate life, and now a return to farmland—albeit it not too far from a city—Hodson-Walker sees math behind her moves.

“Just as in any business, running a farm is a numbers game—budgets, investment decisions, analyzing market initiatives—not to mention the logistics of crop plans. As co-founder of a certified organic farm, I draw upon the solid problem-solving background that I gained at Purdue to address issues associated with a business venture such as analyzing growth opportunities, financing requirements, marketing needs and business performance,” she says. “In business, as in many aspects of life, math is fundamental to all that we do.”

The farm uses the money to cover expenses. The members, in exchange, get produce on a weekly basis throughout the growing season. The Silverwood bounty includes standards like lettuce and onions but ranges also to arugula, eggplant, tomatillos, herbs, watermelon and heirloom tomatoes. Members get some 70 pounds of tomatoes over the course of a season.
Q&A WITH AMIT PRAKASH SHARMA (SON)

I was deeply enamored with their passion for research in structural biology. I was also fascinated with their commitment and enthusiasm—which eventually infected me. After Purdue, I earned a doctorate in protein crystallography from Northwestern University.

HOW DID YOU ARRIVE AT YOUR FOCUS ON MALARIA PARASITES?

My training in structural biology could have been used to study many different biological problems. However, when I decided to establish my laboratory I was clear that I wanted to contribute to basic research towards alleviating human suffering from diseases like malaria and asthma. Once my laboratory was running, I realized that dealing with malaria alone was challenging enough. For the past 15 years, my laboratory has been working on malaria parasite proteins in terms of understanding their potential for developing newer drugs. And still we have a long way to go.

WHAT IMPACT DO YOU HOPE YOUR RESEARCH WILL HAVE?

I hope my research operation will be fruitful from many parameters. Firstly, I hope that my laboratory will remain a good environment for all my students from my laboratory eventually to start their own research cells. Secondly, I hope that our studies will contribute to the pool of knowledge about life and its biological engines. This knowledge base belongs to all of humanity, and in my own little way I hope to keep adding to it. Finally, I hope that my efforts will allow greater understanding of diseases like malaria.

WHAT DRIVES YOU TO EVOLUTION AND GLOBAL WARMING?

My research ideas are inherently driven by my awe and fascination for Darwinian facts of biological evolution. Interestingly, Darwin himself was influenced and guided by the famous geologist Charles Lyell and ideas of uniformitarianism at the time. I was deeply impressed by the hard scientistic beauty of the terrible link between evolution of Earth (and its climate) on one hand and evolution of life on the other hand. These ideas dovetail with my view of humans on earth (an evolved species on temporary residence permit, and in all likelihood to be outlived by insects, bacteria, etc.). This academic conditioning also propels me to use buzzwords of science (investigation, observation, evidence, data, hypothesis, awareness, rationality) to alert us to potential environmental catastrophe.

WHAT DO YOU DO AFTER HOURS?

I retain a deep passion for photography, reading and cricket. Like many other scientists, I have a special fondness for arts, reading and cricket. Like many other scientists, I have a special fondness for arts.

Q&A WITH MANJU SHARMA (MOTHER)

WHEN YOU WERE AN UNDERGRADUATE IN THE 1960S, WAS IT UNUSUAL FOR WOMEN IN INDIA TO PURSUE HIGHER EDUCATION, ESPECIALLY IN SCIENCE?

There were many challenges that I faced as a female student. These included security and having to work harder to achieve the same goals as male students. Today, the atmosphere has changed and things have improved a lot for women. There are many more opportunities and facilities. India has done very well in promoting the cause of women’s education. There are today large numbers of young women joining science. To some extent, I have also contributed to this and started many new initiatives and schemes to involve more women in science.

WHY DID YOU CHOOSE TO FOCUS ON BIOSCIENCE AND TECHNOLOGY?

Bioscience and technology are the areas of science closest to the requirements of humankind, specially to meet the basic needs of food, health, environment and security. I thought that by pursuing biotechnology I would be able to contribute towards human welfare.

HOW DID YOU GET INVOLVED IN WORKING WITH THE INDIAN GOVERNMENT?

After coming back from the U.S., I started a new line of research, science administration and management. It was a promotion of science using a strong scientific infrastructure and excellence, application, new products and technologies, and fast bio-industrial development in my country.

WHAT WAVES HAS THE SCIENTIFIC YEAR CHANGED SINCE YOU FIRST ENTERED IT, AND WHAT DO YOU SEE OF ITS FUTURE?

Science has progressed with spectacular speed globally and it is the most powerful vehicle of societal change. The future is bright and full of hope for the younger generation to do more innovation, publish, patent and commercialize wherever possible. Science can generate knowledge and also contribute towards national economies. Instrumentation has advanced significantly and it has contributed to the rapid growth of many areas of science. Information technology certainly is the very basis of cutting-edge research in biosciences.

NAME

Amit Prakash Sharma

DEGREES

(BS ’90, Biological Sciences)

TITLE

Group Leader of Structural Biology, ICGEB

HOMETOWN

New Delhi, India

NAME

Manju Sharma

• Purdue postdoctoral fellow in biology, 1967
• Former secretary to the Government of India, Department of Biotechnology
• President and executive director of the Indian Institute of Advanced Research and principal advisor to the Department of Science and Technology
• Distinguished woman scientist chair, National Academy of Sciences, India
• Board member UNU-IAS Institute of Advanced Studies, Japan
Colombia is a remarkable place for anyone interested in the life and physical sciences. Though containing only 0.4 percent of Earth’s land area (about twice the area of Texas), Colombia is home to more than 10 percent of known plant and animal species. It also harbors a wealth of microbial diversity yet to be identified. The inventory, characterization, commercial development and sustainability of Colombian diversity have become a major research focus in a recent initiative called the Colombia-Purdue Institute for Advanced Scientific Research (CPIASR).

Colombian biodiversity research is being pursued via collaborations among colleagues at several Colombian universities and research consortia with Purdue faculty in the colleges of Science, Agriculture and Engineering, and at Purdue’s Discovery Park.

Biodiversity in Chocó

Among the least developed but biodiversity-rich areas of Colombia is the Pacific coastal region in the state of Chocó. Located in Chocó’s capital city, Quibdó, is the Universidad Tecnológica del Chocó (UTC), the region’s primary facility for higher education. With the support of Dean Jeffrey Roberts, I visited UTC and toured the Quibdó region, accompanied by Thomas Sors (center project manager for Bindley Bioscience Center) and Maria M. Levy (visiting research scientist) in December 2011. We consulted on UTC’s plans to build a new research facility called Bonnovesa devoted to developing biodiversity in Chocó. We also began discuss collaborations on upgrading science education in this region, especially regarding the study and sustainable use of biodiversity.

In April, the rector (president) of UTC, Eduardo A. García Vega, and a contingent of Bonnovesa scientists visited Purdue to see our facilities and continue our collaborative planning. A highlight of this visit was a letter of intent, signed by the rector and our dean, to promote our continuing academic cooperation in education and research via faculty and student exchanges as well as joint research projects.

Use of aromatic and medicinal plants

One such project is emerging because of CPIASR efforts to foster collaborations between scientists in Chocó and elsewhere in Colombia. Professor Elena Shaenko is a renowned plant natural product chemist who leads a Colombian Center of Excellence, called CENIVAM. This facility is focused on chemical characterization and use of aromatic and medicinal plants. It is located at the Universidad Industrial de Santander (UIS) in the northern city of Bucaramanga.

CENIVAM has established an active collaboration with a UTC scientist for analyzing essential oils from plants endemic to Chocó and testing their use as insect repellents and ingredients in cosmetics, soaps and other cleansing agents.

In May, I stood in the botanical garden surrounding the CENIVAM facility, which contains the plants they have previously analyzed. There were virtually no mosquitoes present at this garden, though these pests are common throughout Colombia.

Purdue’s direct involvement in the project will begin in 2013, when Shaenko and her students will collaborate with Bindley Bioscience Center researchers to expand both the chemical characterization and broad-spectrum bioactivity tests of the compounds they have isolated.

Another UIS professor, Jorge Fuentes, will be a sabbatical visitor with us in 2013. His research will characterize the microbial diversity associated with coal and petroleum deposits in Colombia and the potential use of these microbes for bioremediation or biofuel production. A third researcher, Oscar Segura, from the Medical School of the Universidad de Antioquia, is planning a research visit to Bindley Bioscience Center to study clinical protozoa in Colombian Flasmodium species, agents of malaria with complex life cycles. Sors is Purdue’s lead for this project.

Doctoral research of national relevance

A primary objective of the CPIASR mission is to recruit excellent Colombian students for Purdue doctoral programs where their research projects are relevant to applications in Colombia as well as beneficial for their Purdue mentors. This strategy provides impetus to the careers of our graduates when they return to Colombia as well as improving possibilities of collaborative research funding. In Fall 2012, the Department of Biological Sciences welcomed two new Colombian doctoral students, Alejandro Salazar Villegas and Luis Ernesto Beltrán Forero. Salazar’s research interest concerns the impact of climate change on soil microbial diversity, he is mentored by Professor Jeffrey Dukes. Beltrán’s research interest concerns the sustainability of a unique Colombian ecosystem called the Páramo, a high mountain, cold and humid ecosystem in the watershed area that serves both climate change and human activities (e.g., grazing, agriculture and deforestation). Beltrán is studying an index plant, Espeletia grandiflora, to monitor the dynamics of this ecosystem in the watershed area that serves the Colombian capital, Bogotá.

CPIASR-based collaborations on Colombian biodiversity research also involve Purdue faculty and students from the colleges of Engineering and Agriculture. Research topics include bio-nanomaterials, renewable bio-energy production, food security and nutritional improvement, bio-prospecting for pharmaceuticals and related commercialization.

The partnership between Purdue University and the research and education community of Colombia is ramping up. This year, 40 Colombian students applied to the Colombian government for funding support specifically for Purdue doctoral programs. Fifteen of these applicants were funded and we expect to see many of them here in Fall 2013, to join those that arrived this semester.

The Fulbright Commission of Colombia is actively assisting the CPIASR for graduate recruitment. Faculty and administrators from more than 20 of the top Colombian universities have participated in joint seminars and workshops with Purdue faculty, held both at Purdue and in Colombia. Sabbatical research exchanges have already begun and more are being scheduled. We are now working on developing research and international-distance learning communities using Purdue’s HubU computer facilities to further expand these interactions. With thanks to the many colleagues who have made this initiative possible, the future of our partnership with Colombia is filled with great opportunities.

For those interested in joining the CPIASR initiative, visit: http://engineering.purdue.edu/cpiasr
2012 Class Notes

CORRECTION:

Randy A. Peppler (BS ’80, MS ’82, Earth and Atmospheric Sciences), Norman, OK, is an associate director at the University of Oklahoma Cooperative Institute for Mesoscale Meteorological Studies. He recently completed a dissertation titled “Knowing Which Way the Winds Blow: Weather Observation, Belief and Practice in Native Oklahoma.”

In the spring 2012 Class Notes listing, his name was misspelled as Randl.

1960

Michael P. Dunkle (BS ’64, Chemistry), Towsanda, PA, is recovering from a car accident and a month-long coma.

Marilyn (Meyer) Richardson (BS ’64, Molecular Biology), Unna, KY, is a criminalist instructor at Xavier University in Cincinnati, OH. She and her husband, John, enjoy their five children and eight grandchildren.

Allen J. Campbell (PhD ’69, Organic Chemistry), Louisville, IN, retired after 28 years in various research, quality assurance and process development roles within General Electric. After retirement, he has spent time consulting, selling insurance and preparing taxes. He serves as the treasurer for a condo association.

Andris Zoltner (MS ’69, Mathematics), Evanston, IL, received the 2012 Pharmaceutical Management Science Association Lifetime Achievement Award, recognizing pioneering and paradigm-shifting contributions to the management analytics field in the pharmaceutical and biotech industry.

1970

William H. Myers (BS ’71, Mathematics), Belmont, NC, received a Distinguished Service Award from the Consortium for Computing Sciences in Colleges, in recognition of more than 50 years of service. Myers was membership secretary (1990-97), and treasurer (1997-present).

Susan M. Scott (BS ’72, Biological Sciences), Albuquerque, NM, graduated in May from the University of New Mexico School of Law, three years after retiring with 25 years on faculty at the University of New Mexico School of Medicine. She retired as a professor of pediatrics and served the last five years as senior associate dean for academic affairs. She plans to work in health policy.

1980

Randy A. Peppler (BS ’80, MS ’82, Earth, Atmospheric, and Planetary Sciences), Norman, OK, earned a PhD in geography at the University of Oklahoma in December 2011.

Madeline A. Danny (BS ’82, Biological Sciences), South Bend, IN, began her two-year term as president of the Montgomery County Medical Society at the organization’s annual meeting in June.

1990

Jeremy Partin (MS ’91, Applied Statistics), North Little Rock, AR, has been playing bass for the Arkansas-based death metal band, WHRK, since 2004. The group recently signed a record deal with AFM records, and released a CD, Gravehammer.

René K. (Ketterling) Irvine (BS ’92, MS ’98, Computer Sciences), Lafayette, IN, is a UNIX systems administrator at Purdue. She recently married Buck Irvine, who also works at Purdue.

Brian Nagurski (BS ’96, Biology, MA ’12, Education), Clarendale Heights, IL, owns Nagurski Fitness & Health. He has worked for paleontologist Paul Sereno as medical personnel and took part in an African archaeological expedition with National Geographic Society.

Margaret E. Brown Marsden (PhD ’79, Biological Sciences), Irving, TX, was recently appointed associate dean of Constantin College of Liberal Arts and Science at the University of Dallas.

Roland J. Thorpe (MS ’77, Mathematics), Atlanta, GA, was elected by Fisher Phillips LLP to another three-year term on the firm’s management committee. Quillen has served continuously on the committee since 1997. He was named one of the Top 100 Most Powerful Employment Attorneys by Human Resource Executive magazine.

2000

Emily Bacon (BS ’01, Biological Sciences), Charleston, WI, is a children’s librarian and visual literacy coordinator at the Kenowa County Public Library.

LaJoyce (Henderson) Debro (PhD ’96, Biological Sciences), Birmingham, AL, won the 2012 William A. Hinton Research Training Award. Debro was honored for being an outstanding educator and mentor for students for more than 45 years. She is a biology professor at Jacksonville State University.

2010

Ben Burkel (BS ’04, Earth and Atmospheric Sciences), Bend, OR, was awarded the American Meteorological Society’s Certified Broadcast Meteorologist Seal, a professional recognition of the quality of his weather broadcasts. It is one of the highest awards given to broadcast meteorologists.

In Memoriam

1930

E.C. Young Knott (BS ’37, Science), West Lafayette, IN, Mar. 31.

R. Wayne Byrd (BS ’38, Science), West Lafayette, IN, Feb. 20.

1940

Mary L. (Nourse) Armstrong (BS ’40, Science) Osterlea, MA, Apr. 11.

Betty A. (Blakeman) Heckman (BS ’42, Mathematics), Saeko, CA, March 6.

Robert E. Maynard (BS ’42, Science), Evanston, IL, May 14. He is survived by his wife, Dorothy.

E.C. Young Knott (BS ’37, Science), West Lafayette, IN, Mar. 31.

1930

1940

Mary L. (Nourse) Armstrong (BS ’40, Science) Osterlea, MA, Apr. 11.

Betty A. (Blakeman) Heckman (BS ’42, Mathematics), Saeko, CA, March 6.

Robert E. Maynard (BS ’42, Science), Evanston, IL, May 14. He is survived by his wife, Dorothy.

E.C. Young Knott (BS ’37, Science), West Lafayette, IN, Mar. 31.

1940

Mary L. (Nourse) Armstrong (BS ’40, Science) Osterlea, MA, Apr. 11.

Betty A. (Blakeman) Heckman (BS ’42, Mathematics), Saeko, CA, March 6.

Robert E. Maynard (BS ’42, Science), Evanston, IL, May 14. He is survived by his wife, Dorothy.

E.C. Young Knott (BS ’37, Science), West Lafayette, IN, Mar. 31.

1940

Mary L. (Nourse) Armstrong (BS ’40, Science) Osterlea, MA, Apr. 11.

Betty A. (Blakeman) Heckman (BS ’42, Mathematics), Saeko, CA, March 6.

Robert E. Maynard (BS ’42, Science), Evanston, IL, May 14. He is survived by his wife, Dorothy.

E.C. Young Knott (BS ’37, Science), West Lafayette, IN, Mar. 31.

1940

Mary L. (Nourse) Armstrong (BS ’40, Science) Osterlea, MA, Apr. 11.

Betty A. (Blakeman) Heckman (BS ’42, Mathematics), Saeko, CA, March 6.

Robert E. Maynard (BS ’42, Science), Evanston, IL, May 14. He is survived by his wife, Dorothy.

E.C. Young Knott (BS ’37, Science), West Lafayette, IN, Mar. 31.

1940

Mary L. (Nourse) Armstrong (BS ’40, Science) Osterlea, MA, Apr. 11.

Betty A. (Blakeman) Heckman (BS ’42, Mathematics), Saeko, CA, March 6.

Robert E. Maynard (BS ’42, Science), Evanston, IL, May 14. He is survived by his wife, Dorothy.

E.C. Young Knott (BS ’37, Science), West Lafayette, IN, Mar. 31.

1940

Mary L. (Nourse) Armstrong (BS ’40, Science) Osterlea, MA, Apr. 11.

Betty A. (Blakeman) Heckman (BS ’42, Mathematics), Saeko, CA, March 6.

Robert E. Maynard (BS ’42, Science), Evanston, IL, May 14. He is survived by his wife, Dorothy.

E.C. Young Knott (BS ’37, Science), West Lafayette, IN, Mar. 31.
Learning and Growing from Around the World

From the time that I was about 4 or 5 years old, I was fascinated by the different shades of skin color. As an introverted child, desperately seeking to pass time spent in public, I would walk around a room and try to categorize skin tones. The colors would range from very, very pale to a dark tone and numbered 6. The colors would range from very, very pale to a dark tone and numbered as high as 50 different shades, depending on the room population. This childhood fascination, while I was growing up in central Georgia, served a twofold purpose: it was my introduction to scientific exploration and to the roots of biases and prejudices.

The words of Dr. Martin Luther King Jr. helped shape my worldview: “I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin, but by the content of their character.” As I look at the students enrolled in the College of Science, I am excited that the faculty and staff can play a major role in helping shape their world, regardless of the color of their skin. These students will acquire skill sets that will enable them to do great things in the world. Their propensity for these skills began during childhoods in rural areas, inner cities and countries far and wide.

In the College of Science, we seek to celebrate the diverse backgrounds of our students, staff and faculty by working with each other on many projects and stepping outside of our comfort zones to learn more about the richness of the cultures and heritages represented across the college.

I challenged myself as a doctoral student in Purdue’s Department of Biological Sciences — and still do as a College of Science employee — to interact as often as I can with students whose backgrounds are different from mine. I have met some amazing people and have learned about lands that perhaps, one day, I will visit.

Global diversity is ever increasing. If young scientists are to make a true mark on the world, it is important that we train under-graduate and graduate students to value and embrace diversity and determine ways to effectively work together to enhance the scientific advances that will impact all our lives.

Although I have long since stopped trying to create a scale for labeling skin tones, I will never stop working to ensure that people of all skin tones have access to a quality education in an environment that embraces the myriad of opportunities to learn and grow from people around the world.
Since her first sewing lesson in fourth grade, this creative spirit has stitched her way into a bright future. She loves sewing and fashion design, but math is her thing. She sees the two as the same, but different; both involve figuring out patterns. Meet math major Dana Smith at:

www.purdue.edu/fivestudents/danasmith.